Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.224
Filtrar
1.
PLoS One ; 19(4): e0300311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557451

RESUMO

Canadian fisheries management has embraced the precautionary approach and the incorporation of ecosystem information into decision-making processes. Accurate estimation of fish stock biomass is crucial for ensuring sustainable exploitation of marine resources. Spatio-temporal models can provide improved indices of biomass as they capture spatial and temporal correlations in data and can account for environmental factors influencing biomass distributions. In this study, we developed a spatio-temporal generalized additive model (st-GAM) to investigate the relationships between bottom temperature, depth, and the biomass of three key fished species on The Grand Banks: snow crab (Chionoecetes opilio), yellowtail flounder (Limanda ferruginea), and Atlantic cod (Gadus morhua). Our findings revealed changes in the centre of gravity of Atlantic cod that could be related to a northern shift of the species within the Grand Banks or to a faster recovery of the 2J3KL stock. Atlantic cod also displayed hyperaggregation behaviour with the species showing a continuous distribution over the Grand Banks when biomass is high. These findings suggest a joint stock assessment between the 2J3KL and 3NO stocks would be advisable. However, barriers may need to be addressed to achieve collaboration between the two distinct regulatory bodies (i.e., DFO and NAFO) in charge of managing the stocks. Snow crab and yellowtail flounder centres of gravity have remained relatively constant over time. We also estimated novel indices of biomass, informed by environmental factors. Our study represents a step towards ecosystem-based fisheries management for the highly dynamic Grand Banks.


Assuntos
Ecossistema , Gadus morhua , Animais , Biomassa , Pesqueiros , Terra Nova e Labrador , Canadá , Dinâmica Populacional
2.
Sci Rep ; 14(1): 6088, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480867

RESUMO

Establishing microbiome signatures is now recognized as a critical step toward identifying genetic and environmental factors shaping animal-associated microbiomes and informing the health status of a given host. In the present work, we prospectively collected 63 blood samples of the Atlantic cod population of the Southern Gulf of Saint Lawrence (GSL) and characterized their 16S rRNA circulating microbiome signature. Our results revealed that the blood microbiome signature was dominated at the phylum level by Proteobacteria, Bacteroidetes, Acidobacteria and Actinobacteria, a typical signature for fish populations inhabiting the GSL and other marine ecosystems. At the genus level, however, we identified two distinct cod groups. While the microbiome signature of the first group was dominated by Pseudoalteromonas, a genus we previously found in the microbiome signature of Greenland and Atlantic halibut populations of the GSL, the second group had a microbiome signature dominated by Nitrobacter and Sediminibacterium (approximately 75% of the circulating microbiome). Cods harboring a Nitrobacter/Sediminibacterium-rich microbiome signature were localized in the most southern part of the GSL, just along the northern coast of Cape Breton Island. Atlantic cod microbiome signatures did not correlate with the weight, length, relative condition, depth, temperature, sex, and salinity, as previously observed in the halibut populations. Our study provides, for the first time, a unique snapshot of the circulating microbiome signature of Atlantic cod populations and the potential existence of dysbiotic signatures associated with the geographical distribution of the population, probably linked with the presence of nitrite in the environment.


Assuntos
Gadiformes , Gadus morhua , Microbiota , Animais , Gadus morhua/genética , RNA Ribossômico 16S/genética , Microbiota/genética , Bactérias/genética , Gadiformes/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-38206634

RESUMO

'Cod'-related species are among the most appreciated marine fish resources around the world, but are also prone to species mislabelling. In the present study, a total of 76 frozen, dried, and surimi-based fish products, sold as 'Cod' (59 products), 'Atlantic authentic Cod' (11 products), and 'Authentic Cod' (6 products), were collected in China. A species-specific LAMP (loop-mediated isothermal amplification) method was used to screen for the presence of Atlantic cod (Gadus morhua), Pacific cod (G. macrocephalus), Alaska pollock (G. chalcogrammus), Southern hake (Merluccius australis), which was cross-confirmed using real-time PCR and DNA sequencing methods. The results highlighted the greatest species diversity for 'Cod' products, and the identified species were from nine different families. It appears that the practice of assigning a specific type or category of species to the common name 'Cod' has not been widely advocated, and the misuse of this ambiguous common name has been a common practice for species adulteration, negatively impacting consumers' rights and marine conservation. To rebuild consumers' confidence, retail fish suppliers have differentiated their products by adding specific qualifiers in front of the common name 'Cod' on the label, such as 'Authentic cod' and 'Atlantic authentic cod'. The endeavour is highly meaningful, since Gadus morhua was identified as the species for a significant majority of 'Atlantic authentic cod' and 'Authentic cod' products (64.7%, 11/17), with the remaining six products identified as Alaskan pollock (G. chalcogrammus), Pacific cod (G. macrocephalus) and North Pacific hake (Merluccius productus). Despite the positive effort to reverse species mislabelling from retail on-line fish suppliers, a standardized fish nomenclature stipulated by the responsible authorities remains crucial for enhancing transparency and continuing to reduce species mislabelling.


Assuntos
Gadiformes , Gadus morhua , Humanos , Animais , Gadiformes/genética , Gadus morhua/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Produtos Pesqueiros
4.
Environ Pollut ; 344: 123322, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211875

RESUMO

Marine vibrators are a new technology being developed for seismic surveys. These devices can transmit continuous instead of impulsive sound and operate over a narrower frequency band and at lower peak pressure than airguns, which is assumed to reduce their environmental impacts. We exposed spawning Atlantic cod (Gadus morhua) to sound produced by a prototype, but full-scale, marine vibrator, and monitored behavioural responses of tagged cod using acoustic telemetry. Fish were exposed to 10 × 3 h continuous sound treatments over a 4-day period using a randomised-block design. Sound exposure levels were comparable to airgun exposure experiments conducted previously with the same set-up ranging from ∼115 to 145 dB re 1 µPa2s during exposure. Telemetry data were used to assess 1) whether marine vibrator exposure displaced cod from the spawning ground, through estimation of residence and survival probabilities, and 2) fine-scale behavioural responses within the test site, namely swimming depth, activity levels, displacement, and home ranges. Forty-two spawning cod were tagged prior to the exposure, with 22 present during the exposure. All 22 tags were equipped with pressure sensors and ten of these additionally with accelerometers. While no premature departure from the spawning site was observed, cod reacted to the exposure by decreasing their activity levels (by up to 50%, SE = 7%) and increasing their swimming depth (by up to 2.5 m, SE = 1.0 m) within the test site during the exposure period. These behavioural responses varied by sex and time of day. Cod reactions to a marine vibrator may be more pronounced than reactions to airguns, possibly because continuous sound is more disturbing to fish than intermittent sound at the same exposure levels. However, given sample size limitations of the present study, further studies with continuous sound are necessary to fully understand its impact and biological significance.


Assuntos
Gadus morhua , Animais , Acústica , Meio Ambiente , Peixes , Gadus morhua/fisiologia , Som , Comportamento Animal
5.
Sci Total Environ ; 912: 169110, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38065506

RESUMO

Pharmaceuticals and personal care products (PPCPs) are frequently detected in marine environments, posing a threat to aquatic organisms. Our previous research demonstrated the occurrence of neuroactive compounds in effluent and sediments from a wastewater treatment plant (WWTP) in a fjord North of Stavanger, the fourth-largest city in Norway. To better understand the influence of PPCP mixtures on fish, Atlantic cod (Gadus morhua) were caged for one month in 3 locations: site 1 (reference), site 2 (WWTP discharge), and site 3 (6.7 km west of discharge). Transcriptomic profiling was conducted in the brains of exposed fish and detection of PPCPs in WWTP effluent and muscle fillets were determined. Caffeine (47.8 ng/L), benzotriazole (10.9 ng/L), N,N-diethyl-meta-toluamide (DEET) (5.6 ng/L), methyl-1H-benzotriazole (5.5 ng/L), trimethoprim (3.4 ng/L), carbamazepine (2.1 ng/L), and nortriptyline (0.4 ng/L) were detected in the WWTP effluent. Octocrylene concentrations were observed in muscle tissue at all sites and ranged from 53 to 193 ng/g. Nervous system function and endocrine system disorders were the top enriched disease and function pathways predicted in male and female fish at site 2, with the top shared canonical pathways involved with estrogen receptor and Sirtuin signaling. At the discharge site, predicted disease and functional responses in female brains were involved in cellular assembly, organization, and function, tissue development, and nervous system development, whereas male brains were involved in connective tissue development, function, and disorders, nervous system development and function, and neurological disease. The top shared canonical pathways in females and males were involved in fatty acid activation and tight junction signaling. This study suggests that pseudopersistent, chronic exposure of native juvenile Atlantic cod from this ecosystem to PPCPs may alter neuroendocrine and neuron development.


Assuntos
Cosméticos , Gadus morhua , Poluentes Químicos da Água , Purificação da Água , Animais , Feminino , Encéfalo , Cosméticos/toxicidade , Cosméticos/análise , Ecossistema , Monitoramento Ambiental , Perfilação da Expressão Gênica , Preparações Farmacêuticas , Águas Residuárias/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Masculino
6.
Int J Food Microbiol ; 410: 110426, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37977078

RESUMO

Zoonotic nematodes of the family Anisakidae are highly common in many marine fish species, which act as paratenic hosts for the third larval stage. In the fish, these parasites may migrate from the fish's gastro-intestinal tract (GI-tract) further to the coelomic cavity and muscles, making them a possible contamination source of bacteria they carry on their cuticle and in their GI-tract. A previous study revealed no apparent effect of Anisakis simplex on spoilage of fish, but the equally common anisakid species Pseudoterranova decipiens has a larger body surface potentially increasing the bacterial load brought into the fish muscle upon migration. As the presence of shelf-life reducing spoilage bacteria in the microbiome of this anisakid species has been demonstrated, the objective of the present study was to assess the potential shelf-life reducing effect of P. decipiens in fresh fish fillets stored in a domestic refrigerator. Atlantic cod was used as a model since members of the cod family are the third most consumed marine fish globally and it has the highest prevalence of P. decipiens infections. Infected and non-infected codfish fillet portions were collected and microbiologically analyzed at day 0 and day 4 of storage in a domestic fridge. Three isolation media were used to enhance maximum bacterial recovery and isolates were identified using MALDI-TOF MS and 16S rRNA gene sequencing. In parallel to the microbiological examination, sensory analysis was performed daily on the cod fillets to evaluate the freshness of the fish. Results revealed the presence of typical spoilage bacteria (e.g., Pseudomonas sp., Photobacterium sp.) in all fish, but based on the total viable counts, total H2S-producing bacteria, and sensory analysis, there were no objective indications to assume an increased fish spoilage rate by the presence and migration P. decipiens. Additionally, a beta-diversity comparison revealed no significant differences in microbiota composition between infected and non-infected fish parts, though individual heterogeneity in microbiome composition among Atlantic codfish individuals was found. As total viable counts did, however, exceed the guideline limits for fresh fish, further research should now focus on the role of the candling step as a potential source of post-harvest contamination. As such, anisakid infection might still accelerate fish spoilage, though now in an indirect way.


Assuntos
Anisakis , Ascaridoidea , Gadus morhua , Animais , Gadus morhua/genética , Gadus morhua/parasitologia , RNA Ribossômico 16S/genética , Ascaridoidea/genética , Peixes/parasitologia
7.
Chemosphere ; 349: 140939, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101477

RESUMO

From 2005 to 2019, three gadoid species, Atlantic cod (Gadus morhua), haddock (Melanogrammus aeglefinus) and saithe (Pollachius virens), were sampled approximately every third year in the northeastern part of the North Sea. Liver samples were analyzed to investigate levels and temporal trends of six groups of persistent organic pollutants (POPs): polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and its degradation products, hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB), trans-nonachlor (TNC), and polybrominated diphenyl ethers (PBDEs). Some of the highest average concentrations were found in cod, the levels otherwise being similar between the three species and mostly below established threshold values. The levels of all the contaminants except HCB and TNC were higher than previously reported for cod and haddock in the Barents Sea. Significantly decreasing levels were found for Σ7PCBs, ΣDDTs, ΣHCHs and Σ15PBDEs in all three species, and for TNC in haddock and saithe, while there was no significant trend for TNC in cod. HCB levels increased significantly in cod and haddock and showed only a minor decrease in saithe. The observed time trends of legacy POPs demonstrate the persistence of some of the studied pollutants despite efforts to eliminate them from the marine environment.


Assuntos
Poluentes Ambientais , Gadiformes , Gadus morhua , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Poluentes Orgânicos Persistentes/metabolismo , Hexaclorobenzeno/metabolismo , Mar do Norte , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Bifenilos Policlorados/metabolismo , Fígado/metabolismo , Gadiformes/metabolismo , Poluentes Ambientais/metabolismo , Gadus morhua/metabolismo , Éteres Difenil Halogenados/metabolismo
8.
Science ; 382(6675): 1181-1184, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38060630

RESUMO

The Earth's ecosystems are increasingly deprived of large animals. Global simulations suggest that this downsizing of nature has serious consequences for biosphere functioning. However, the historical loss of large animals means that it is now often impossible to secure empirical data revealing their true ecological importance. We tracked 465 mature Atlantic cod (Gadus morhua) during their winter spawning season and show that large females (up to 114 centimeters in length), which are still found in mid-Norway, were characterized by more complex movement networks compared with smaller females. Large males were sparse but displayed similar movement patterns. Our finding implies that management programs promoting large fish will have positive impacts on population resilience by facilitating the continued use of a diversity of spawning habitats and the connectivity between them.


Assuntos
Gadus morhua , Aquecimento Global , Animais , Feminino , Masculino , Ecossistema , Gadus morhua/anatomia & histologia , Gadus morhua/crescimento & desenvolvimento , Noruega , Tamanho Corporal
9.
Cells ; 12(23)2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-38067188

RESUMO

Adaptation to environmental variation caused by global climate change is a significant aspect of fisheries management and ecology. A reduction in ocean salinity is visible in near-shore areas, especially in the Baltic Sea, where it is affecting the Atlantic cod population. Cod is one of the most significant teleost species, with high ecological and economical value worldwide. The population of cod in the Baltic Sea has been traditionally divided into two subpopulations (western and eastern) existing in higher- and lower-salinity waters, respectively. In recent decades, both Baltic cod subpopulations have declined massively. One of the reasons for the poor condition of cod in the Baltic Sea is environmental factors, including salinity. Thus, in this study, an oligonucleotide microarray was applied to explore differences between Baltic cod subpopulations in response to salinity fluctuations. For this purpose, an exposure experiment was conducted consisting of salinity elevation and reduction, and gene expression was measured in gill tissue. We found 400 differentially expressed genes (DEGs) involved in the immune response, metabolism, programmed cell death, cytoskeleton, and extracellular matrix that showed a subpopulation-dependent pattern. These findings indicate that osmoregulation in Baltic cod is a complex process, and that western and eastern Baltic cod subpopulations respond differently to salinity changes.


Assuntos
Gadus morhua , Animais , Gadus morhua/genética , Gadus morhua/metabolismo , Salinidade , Transcriptoma/genética , Países Bálticos
10.
Parasitol Res ; 123(1): 39, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095734

RESUMO

Parasitic fauna of the White Sea cod, Gadus morhua marisalbi; the navaga, Eleginus nawaga; and the shorthorn sculpin, Myoxocephalus scorpius, in the White Sea was repeatedly studied, but no large-scale parasitological surveys have been made in the recent three decades. To fill this gap, we conducted a survey of the helminths of these three fish species at the White Sea Biological Station (Karelia, Russia) of the Lomonosov Moscow State University in August 2021. The navaga (50 specimens studied) was found to be infected with 13 species of helminths; the White Sea cod (50 specimens), with 12 species; and the shorthorn sculpin (21 specimens), with 13 species. Plerocercoids of Diphyllobothrium schistochilus and third-stage juveniles of Pseudoterranova bulbosa were recorded in the White Sea for the first time. The helminth infracommunities of the navaga and the White Sea cod were closer in structure to each other than to those of the shorthorn sculpin. In general, the levels of helminth infection of the White Sea cod, the navaga, and shorthorn sculpin have been consistently high over 85 years of observations in the White Sea, but long-term trends in the abundance of some helminth species were multidirectional.


Assuntos
Gadiformes , Gadus morhua , Helmintos , Perciformes , Humanos , Animais , Peixes/parasitologia
11.
Mar Drugs ; 21(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37999411

RESUMO

The rest raw materials of whitefish have great potential for increased utilisation and value creation. Whitefish heads have a high protein content and should be considered a healthy protein source for the growing population's demands for sustainable protein. In this study, the heads of four different species of whitefish were processed via enzymatic hydrolysis, namely cod (Gadus morhua), cusk (Brosme bromse), haddock (Melanogrammus aeglefinus), and saithe (Pollachius virens), using three commercially available enzymes. Trials were conducted after 0, 3, and 6 months of the frozen storage of heads. A proximate analysis, molecular weight distribution, and protein solubility were evaluated for each of the products. The results show that, although the enzymatic hydrolysis of rest raw materials from different species of whitefish yielded products of slightly different characteristics, this process is viable for the production of high-quality protein from cod, cusk, haddock, and saithe heads. Six months of frozen storage of heads had a minimal effect on the yield and proximate composition of hydrolysates.


Assuntos
Gadiformes , Gadus morhua , Salmonidae , Animais , Hidrolisados de Proteína/química , Alimentos Marinhos
12.
Genomics ; 115(6): 110735, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37898334

RESUMO

We report the histological and transcriptomic changes in the olfactory organ of Atlantic cod exposed to Francisella noatunensis. Experimental infection was performed at either 12 °C or 17 °C. Infected fish presented the classic gross pathologies of francisellosis. Nasal morpho-phenotypic parameters were not significantly affected by elevated temperature and infection, except for the number of mucus cells in the 12 °C group seven weeks after the challenge. A higher number of genes were altered through time in the group reared at 17 °C. At termination, the nasal transcriptome of infected fish in both groups was similar to the control. When both infected groups were compared, 754 DEGs were identified, many of which were involved in signalling, defence, transmembrane and enzymatic processes. In conclusion, the study reveals that elevated temperature could trigger responses in the olfactory organ of Atlantic cod and shape the nasal response to F. noatunensis infection.


Assuntos
Francisella , Gadus morhua , Animais , Gadus morhua/genética , Temperatura , Francisella/genética
13.
PLoS One ; 18(10): e0292495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37792752

RESUMO

Atlantic cod is a keystone species that remains among the most economically important demersal fish in the North Atlantic. Throughout its distribution range, Atlantic cod is composed of populations with varying environmental preferences and migratory propensities. This life-history variation is likely to have contributed to the niche width and large population sizes of Atlantic cod, and its relative resilience to environmental change and exploitation. The Icelandic cod stock is currently managed as a single unit, but early research indicates population variation by depth and temperature and distinct offshore and inshore spawning components. Pelagic 0-group juveniles from different spawning grounds coexist in nursery areas around Iceland, but their genetic composition or habitat partitioning had not been examined post benthic settlement. In the current study we examine the genetic composition of Atlantic cod juvenile aggregations at nearshore nursery grounds in NW-Iceland and report distinct segregation by the depth of offshore and inshore juvenile cod. The physiological mechanism of this segregation is not known, but the pattern demonstrates the need to consider population structure at nursery grounds in the application of marine spatial planning and other area-based conservation tools.


Assuntos
Gadus morhua , Traços de História de Vida , Animais , Gadus morhua/genética , Peixes , Ecossistema , Densidade Demográfica , Oceano Atlântico
14.
J Anim Ecol ; 92(12): 2333-2347, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37843043

RESUMO

Foraging is a behavioural process and, therefore, individual behaviour and diet are theorized to covary. However, few comparisons of individual behaviour type and diet exist in the wild. We tested whether behaviour type and diet covary in a protected population of Atlantic cod, Gadus morhua. Working in a no-take marine reserve, we could collect data on natural behavioural variation and diet choice with minimal anthropogenic disturbance. We inferred behaviour using acoustic telemetry and diet from stable isotope compositions (expressed as δ13 C and δ15 N values). We further investigated whether behaviour and diet could have survival costs. We found cod with shorter diel vertical migration distances fed at higher trophic levels. Cod δ13 C and δ15 N values scaled positively with body size. Neither behaviour nor diet predicted survival, indicating phenotypic diversity is maintained without survival costs for cod in a protected ecosystem. The links between diet and diel vertical migration highlight that future work is needed to understand whether the shifts in this behaviour during environmental change (e.g. fishing or climate), could lead to trophic cascades.


Assuntos
Ecossistema , Gadus morhua , Animais , Clima , Isótopos , Comportamento Espacial
15.
Environ Pollut ; 338: 122706, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37821039

RESUMO

The Northeast Arctic cod (Gadus morhua) is the world's northernmost stock of Atlantic cod and is of considerable ecological and economic importance. Northeast Arctic cod are widely distributed in the Barents Sea, an environment that supports a high degree of ecosystem resiliency and food web complexity. Here using 121 years of ocean temperature data (1900-2020), 41 years of sea ice extent information (1979-2020) and 27 years of total mercury (Hg) fillet concentration data (1994-2021, n = 1999, ≥71% Methyl Hg, n = 20) from the Barents Sea ecosystem, we evaluate the effects of climate change dynamics on Hg temporal trends in Northeast Arctic cod. We observed low and consistently stable, Hg concentrations (yearly, least-square means range = 0.022-0.037 mg/kg wet wt.) in length-normalized fish, with a slight decline in the most recent sampling periods despite a significant increase in Barents Sea temperature, and a sharp decline in regional sea ice extent. Overall, our data suggest that recent Arctic amplification of ocean temperature, "Atlantification," and other perturbations of the Barents Sea ecosystem, along with rapidly declining sea ice extent over the last ∼30 years did not translate into major increases or decreases in Hg bioaccumulation in Northeast Arctic cod. Our findings are consistent with similar long-term, temporal assessments of Atlantic cod inhabiting Oslofjord, Norway, and with recent investigations and empirical data for other marine apex predators. This demonstrates that Hg bioaccumulation is highly context specific, and some species may not be as sensitive to current climate change-contaminant interactions as currently thought. Fish Hg bioaccumulation-climate change relationships are highly complex and not uniform, and our data suggest that Hg temporal trends in marine apex predators can vary considerably within and among species, and geographically. Hg bioaccumulation regimes in biota are highly nuanced and likely driven by a suite of other factors such as local diets, sources of Hg, bioenergetics, toxicokinetic processing, and growth and metabolic rates of individuals and taxa, and inputs from anthropogenic activities at varying spatiotemporal scales. Collectively, these findings have important policy implications for global food security, the Minamata Convention on Mercury, and several relevant UN Sustainable Development Goals.


Assuntos
Gadus morhua , Mercúrio , Animais , Ecossistema , Mercúrio/metabolismo , Mudança Climática , Cadeia Alimentar , Peixes , Regiões Árticas
16.
J Appl Toxicol ; 43(12): 1859-1871, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37528559

RESUMO

In the North Sea and North Atlantic coastal areas, fish experience relatively high background levels of persistent organic pollutants. This study aimed to compare the mode of action of environmentally relevant concentrations of mixtures of halogenated compounds in Atlantic cod. Juvenile male cod with mean weight of 840 g were exposed by gavage to dietary mixtures of chlorinated (PCBs, DDT analogs, chlordane, lindane, and toxaphene), brominated (PBDEs), and fluorinated (PFOS) compounds for 4 weeks. One group received a combined mixture of all three compound groups. The results showed that the accumulated levels of chemicals in cod liver after 4 weeks of exposure reflected concentrations found in wild fish in this region. Pathway analysis revealed that the treatment effects by each of the three groups of chemicals (chlorinated, brominated, and fluorinated) converged on activation of the unfolded protein response (UPR). Upstream regulator analysis predicted that almost all the key transcription factors (XBP1, ERN1, ATF4, EIF2AK3, and NFE2L2) regulating the UPR were significantly activated. No additive effect was observed in cod co-treated with all three compound groups. In conclusion, the genome-wide transcriptomic study suggests that the UPR pathway is a sensitive common target of halogenated organic environmental pollutants in fish.


Assuntos
Poluentes Ambientais , Gadus morhua , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Masculino , Gadus morhua/metabolismo , Poluentes Orgânicos Persistentes/metabolismo , Poluentes Orgânicos Persistentes/farmacologia , Fígado , Bifenilos Policlorados/análise , Poluentes Ambientais/análise , Poluentes Químicos da Água/análise
17.
Environ Res ; 234: 116516, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37399986

RESUMO

Polycyclic aromatic hydrocarbons found in crude oil can impair fish health following sublethal exposure. However, the dysbiosis of microbial communities within the fish host and influence it has on the toxic response of fish following exposure has been less characterized, particularly in marine species. To better understand the effect of dispersed crude oil (DCO) on juvenile Atlantic cod (Gadus morhua) microbiota composition and potential targets of exposure within the gut, fish were exposed to 0.05 ppm DCO for 1, 3, 7, or 28 days and 16 S metagenomic and metatranscriptomic sequencing on the gut and RNA sequencing on intestinal content were conducted. In addition to assessing species composition, richness, and diversity from microbial gut community analysis and transcriptomic profiling, the functional capacity of the microbiome was determined. Mycoplasma and Aliivibrio were the two most abundant genera after DCO exposure and Photobacterium the most abundant genus in controls, after 28 days. Metagenomic profiles were only significantly different between treatments after a 28-day exposure. The top identified pathways were involved in energy and the biosynthesis of carbohydrates, fatty acids, amino acids, and cellular structure. Biological processes following fish transcriptomic profiling shared common pathways with microbial functional annotations such as energy, translation, amide biosynthetic process, and proteolysis. There were 58 differently expressed genes determined from metatranscriptomic profiling after 7 days of exposure. Predicted pathways that were altered included those involved in translation, signal transduction, and Wnt signaling. EIF2 signaling was consistently dysregulated following exposure to DCO, regardless of exposure duration, with impairments in IL-22 signaling and spermine and spermidine biosynthesis in fish after 28 days. Data were consistent with predictions of a potentially reduced immune response related to gastrointestinal disease. Herein, transcriptomic-level responses helped explain the relevance of differences in gut microbial communities in fish following DCO exposure.


Assuntos
Gadus morhua , Microbioma Gastrointestinal , Microbiota , Petróleo , Poluentes Químicos da Água , Animais , Gadus morhua/metabolismo , Petróleo/análise , Petróleo/metabolismo , Petróleo/toxicidade , Peixes , Microbiota/genética , Poluentes Químicos da Água/análise
18.
J Anim Ecol ; 92(10): 1966-1978, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37485731

RESUMO

Movement diversity within species represent an important but often neglected, component of biodiversity that affects ecological and genetic interactions, as well as the productivity of exploited systems. By combining individual tracking data from acoustic telemetry with novel genetic analyses, we describe the movement diversity of two Atlantic cod Gadus morhua ecotypes in two high-latitude fjord systems: the highly migratory Northeast Arctic cod (NEA cod) that supports the largest cod fishery in the world, and the more sedentary Norwegian coastal cod, which is currently in a depleted state. As predicted, coastal cod displayed a higher level of fjord residency than NEA cod. Of the cod tagged during the spawning season, NEA cod left the fjords permanently to a greater extent and earlier compared to coastal cod, which to a greater extent remained resident and left the fjords temporarily. Despite this overall pattern, horizontal movements atypical for the ecotypes were common with some NEA cod remaining within the fjords year-round and some coastal cod displaying a low fjord fidelity. Fjord residency and exit timing also differed with spawning status and body size, with spawning cod and large individuals tagged during the feeding season more prone to leave the fjords and earlier than non-spawning and smaller individuals. While our results confirm a lower fjord dependency for NEA cod, they highlight a movement diversity within each ecotype and sympatric residency between ecotypes, previously undetected by population-level monitoring. This new knowledge is relevant for the management, which should base their fisheries advice for these interacting ecotypes on their habitat use and seasonal movements.


Assuntos
Gadiformes , Gadus morhua , Humanos , Animais , Ecótipo , Simpatria , Gadus morhua/genética , Biodiversidade
19.
Epigenetics ; 18(1): 2237759, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37499122

RESUMO

After suffering several collapses, the cod farming industry is now in the process of trying to re-establish itself. We have used material from Norway's National Cod Breeding Program to study how different early life-stage temperature regimes affect DNA methylation and gene expression. Long-term effects were detected by sampling fish several weeks after the end of differential treatments, and offspring from the different exposure groups was also sampled. Many overlapping genes were found between the different exposure groups and generations, coupled with genes associated with differential CpG methylation levels. Genes involved in muscle fibre development, general metabolic processes and formation of deformities were significantly affected, and genes relevant for intergenerational transfer of epigenetic marks were also detected. We believe the use of environmental cues can be a useful strategy for improving the production of Atlantic cod.


Assuntos
Gadus morhua , Animais , Gadus morhua/genética , Gadus morhua/metabolismo , Temperatura , Metilação de DNA , Expressão Gênica
20.
Folia Parasitol (Praha) ; 702023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37265200

RESUMO

Evolutionary and ecological processes affecting the interactions between hosts and parasites in the aquatic environment are at display in the Baltic Sea, a young and ecologically unstable marine ecosystem, where fluctuating abiotic and biotic factors affect the parasitofauna in fish. The dynamic infections of Baltic cod, a subpopulation of the Atlantic cod (Gadus morhua Linnaeus), with third stage anisakid nematode larvae of Pseudoterranova decipiens (Krabbe, 1878) and Contracaecum osculatum (Rudolphi, 1802) have increased following a significant increase of the Baltic grey seal Halichoerus grypus (Fabricius) population in the region. Cod serves as a paratenic host and marine mammals, pinnipeds, are definitive hosts releasing parasite eggs, with faeces, to the marine environment, where embryonation and hatching of the third stage larva take place. The parasite has no obligate intermediate hosts, but various invertebrates, smaller fish and cod act as paratenic hosts transmitting the infection to the seal. Contracaecum osculatum has an impact on the physiological performance of the cod, which optimises transmission of the larva from fish to seal. Thus, a muscle mass decrease of nearly 50% may result from heavy C. osculatum infections, probably amplified by a restricted food availability. The muscle atrophy is likely to reduce the escape reactions of the fish when meeting a foraging seal. In certain regions, where fish and seals are restricted in their migration patterns, such as the semi-enclosed Baltic Sea, the predation may contribute to a severe cod stock depletion. The parasites are zoonotic and represent a human health risk, when consumers ingest insufficiently heat- or freeze-treated infected products. Marked infections of the cod were previously reported during periods with elevated seal populations (late 19th and middle 20th century) and various scenarios for management of risk factors are evaluated in an evolutionary context.


Assuntos
Ascaridoidea , Doenças dos Peixes , Gadus morhua , Parasitos , Focas Verdadeiras , Humanos , Animais , Ecossistema , Peixes , Focas Verdadeiras/parasitologia , Larva/fisiologia , Ascaridoidea/fisiologia , Gadus morhua/parasitologia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...